Descriptive Compound ldentifier Names Improve
Source Code Comprehension

Andrea Schankin
Karlsruhe Institute of Technology
Karlsruhe, Germany
schankin@teco.edu

Johannes C. Hofmeister
University of Passau
Passau, Germany
johannes.hofmeister@uni-passau.de

ABSTRACT

Reading and understanding source code is a major task in soft-
ware development. Code comprehension depends on the quality
of code, which is impacted by code structure and identifier nam-
ing. In this paper we empirically investigated whether longer but
more descriptive identifier names improve code comprehension
compared to short names, as they represent useful information in
more detail. In a web-based study 88 Java developers were asked
to locate a semantic defect in source code snippets. With descrip-
tive identifier names, developers spent more time in the lines of
code before the actual defect occurred and changed their reading
direction less often, finding the semantic defect about 14% faster
than with shorter but less descriptive identifier names. These ef-
fects disappeared when developers searched for a syntax error, i.e.,
when no in-depth understanding of the code was required. Interest-
ingly, the style of identifier names had a clear impact on program
comprehension for more experienced developers but not for less
experienced developers.

CCS CONCEPTS

« Human-centered computing — Empirical studies in HCI;
« Software and its engineering — Software usability; Error han-
dling and recovery; Maintaining software;

KEYWORDS

Program Comprehension, Identifier Names, Java Developers, Soft-
ware Quality

ACM Reference Format:

Andrea Schankin, Annika Berger, Daniel V. Holt, Johannes C. Hofmeis-
ter, Till Riedel, and Michael Beigl. 2018. Descriptive Compound Identi-
fier Names Improve Source Code Comprehension. In ICPC °18: ICPC ’18:
26th IEEE/ACM International Conference on Program Comprehension , May

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5714-2/18/05...$15.00
https://doi.org/10.1145/3196321.3196332

Annika Berger
Karlsruhe Institute of Technology
Karlsruhe, Germany
berger@teco.edu

Till Riedel
Karlsruhe Institute of Technology
Karlsruhe, Germany
riedel@teco.edu

Daniel V. Holt
Heidelberg University
Heidelberg, Germany

danielholt@uni-heidelberg.de

Michael Beigl
Karlsruhe Institute of Technology
Karlsruhe, Germeny

michael . beigl@kit.edu

27-28, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3196321.3196332

1 INTRODUCTION

Developing software requires comprehending source code [9], whe-
ther it is developing new software, maintaining existing software
or integrating new functionalities [24]. When improving software,
the integration of the actual function may need less time than un-
derstanding the style and intention of the initial software engineer
[16]. Investigating how developers understand source code may
allow us to improve code comprehensibility, leading to reduced
time and costs.

Code comprehension depends on the quality of code, which is im-
pacted by program features such as code structure, comments, and
identifier naming [19]. Naming conventions are usually provided
to improve consistency within and across projects. While some
guidelines are aimed at increasing readability, e.g using camelCase
[6, 7, 25], other naming conventions allow differentiating identi-
fiers with regard to their functionality within the code. However,
these conventions do not necessarily lead to better code compre-
hension because the actual meaning or function of the code may
not have been expressed clearly [14]. This idea has been addressed
by approaches such as clean code [22] or domain-driven design [15],
which are supposed to allow intuitive code comprehension, without
much effort in short time.

However, empirical evidence with regard to the appropriate length
of identifier names is still sparse. It has been shown that very short
identifier names often do not convey information in sufficient de-
tail [17, 19]. They are as impractical as excessively long identifiers,
which may overload working memory [20].

In this paper we describe an experimental study in which we
quantify the impact of identifier naming style on program compre-
hension. Psychological research on comprehensibility of natural-
language texts supports both short and long identifier names. On
the one side, the word-length effect [5] would predict that short iden-
tifier names improve code comprehension because they require less
cognitive capacity than longer ones. This effect describes that lists
of short strings are easier to remember than lists of long strings.
Thus, the performance of developers may be better with short iden-
tifier names because more items fit into working memory, allowing
a better overview of the code. In contrast, a word’s meaning can
help to relieve cognitive resources, either through a process called

https://doi.org/10.1145/3196321.3196332
https://doi.org/10.1145/3196321.3196332

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

chunking [5], in which items are regrouped to more meaningful
units, or by activating concepts in long-term memory. Both processes
predict a better comprehension performance for longer but more
descriptive identifier names.

We make three contributions:

(1) We show that code containing descriptive compound iden-
tifier names is comprehended faster than those with short
single-word identifiers in Java. Thus, we replicate and ex-
tend the findings by Lawrie et al. [19, 20] and Hofmeister et
al. [17], who have reported improved source code compre-
hension when identifiers were named with words instead of
single letters or abbreviations.

(2) We improve the ecological validity of findings by using more
complex code snippets, consisting of a class with one to three
methods. We used identifier names that may be used in real
software development projects.

(3) We explore the impact of programming expertise on code
comprehension. Our results show that experienced program-
mers clearly benefit from descriptive compound identifier
names, whereas novices do not.

2 RELATED WORK

Since the length of identifier names is no longer limited by compil-
ers, programmers have great freedom to select names that promote
code understanding. Well chosen longer identifier names with em-
bedded subwords (i.e., compound identifier names) can carry more
information than single-word or even single-letter identifiers [21],
e.g., notConverted compared to input as parameter of a func-
tion that converts a string from camelcase to underscore. However,
what is the impact of descriptive compound identifier names on
code comprehension?

Code comprehension has been measured in many different ways
tapping various cognitive processes (e.g., perception, attention,
memory, and reasoning). We will briefly summarize related work
for different tasks and measures of code comprehension.

Semantic description of the function. Lawrie et al. [19] varied the
identifier length between single letter, abbreviation and full word.
In the latter two conditions names could consist of a single word or
a compound. As a measure of program comprehension, participants
were asked to describe the functionality of a code snippet in their
own words and their confidence in the description. Program com-
prehension was better for abbreviated and word identifier names
in comparison to a single letter.

Defect detection. In a similar study by Hofmeister et al. [17],
participants’ time to find an error in the code was measured. The
authors varied the length of identifier names between single letter,
abbreviation and word. In contrast to the study by Lawrie et al.
[19], single words but no compounds were used. Program compre-
hension was better for full words compared to single letters and
abbreviations, but only if an in-depth understanding of the code
was required.

Remember and recall. Binkley et al. [8] investigated the length
of identifier names on short- and long-term memory. To name a
method, the authors used Java chain expressions (i.e., a chaining
of method calls and field selectors) of different length. Participants
were asked to remember the name and to recall one part of it after

A. Schankin et al.

having worked on a distracting task. Although participants needed
longer to remember names with increasing length, there was no
negative effect on correct recall for experienced Java developers if
the name could be tied to concepts in long-term memory.

Acceptance. Relf [23] measured the subjective acceptance of 19
naming guidelines, amongst others using short names (i.e., identi-
fiers shorter than 8 characters), long names (i.e., identifier names
longer than 20 characters), and compound names (i.e., identifiers
should consist of two to four words). Expert programmers accepted
these three guidelines, even if they were cognitively more demand-
ing.

Code quality. Butler et al. [10] investigated the relationship be-
tween the quality of identifier names and code quality (measured
with the code analysis tool FindBugs!) in eight established open
source Java applications. The quality of code was best with identi-
fier names composed of two to four words. In contrast, Aman [1]
reported that Java methods collected from nine popular open source
products were more fault-prone when local variables were named
with compounds. To measure code quality, the authors counted
the number of bug fixes, assuming that a smaller number were
related to a better code quality. However, one may argue that bugs
may simply not have been found in methods with short identifier
naming.

3 RESEARCH QUESTION AND HYPOTHESES

In summary, previous research has shown that longer descriptive
identifier names may improve code comprehension. However, to
our knowledge no empirical study has directly compared short
identifiers consisting mostly of single words and longer but more
informative compound identifiers yet. Before motivating our hy-
potheses, we introduce the measurement we used as well as our
experimental rationale.

3.1 Measuring Code Comprehension
(Dependent Variables)

Task completion time. We operationalized the performance of com-
prehension by measuring how long developers investigated a snip-
pet of code to find a defect. The response is easy to score for cor-
rectness and it has a well-defined time point, allowing reaction time
analyses. Locating defects is a common programming task, which
renders it a relevant target for studying program comprehension.
We assumed that semantic defects in code can only be found and cor-
rected when it is understood, because developers cannot evaluate
the consequences of their changes otherwise (see [17]).

Visual focus. In order to explore the actual process of reading
source code a restricted focus viewer was used [18]. The viewer
allowed us to record how much time developers spent looking at
different parts of the code and to observe their direction of reading.

3.2 Experimental Variation
(Independent Variables)

Identifier naming style. In our study we compared short, mostly
single-word identifier names (“short” condition) with longer com-
pound identifier names (“compound” condition). It is important

!https://findbugs.sourceforge.net/

Descriptive Compound Identifier Names Improve
Source Code Comprehension

to note that the compound identifiers we created did not simply
consist of more characters but were also more descriptive, carrying
more information about the intention of a function. Because the
scope of the variables and methods was rather small in the code
snippets we used, short identifiers should be sufficient to describe
the function [1]. However, we propose that longer but more de-
scriptive compound identifier names allow a better mapping to the
mental model of the software engineer about the problem domain.
This may have two effects. First, identifiers might be easier and
faster to remember and to recall from long-term memory. Second,
inconsistencies between the code and the mental model might lead
to a faster detection of semantic defects.

Type of defect. Finding semantic defects requires that the inten-
tions behind the code (what should it do?) and the semantics of
its operation (what does it do?) are understood to give a correct
response. The code compiles without errors but the result of the
method is not as intended. As a control condition we tested whether
identifier naming style affects performance in tasks in which no
in-depth understanding of the code is required. This allowed us
to evaluate whether the naming conditions selectively interfered
with high-level program comprehension or whether they also affect
lower-level reading processes. To accomplish this, we measured
how much time developers needed to locate a syntax error. Syntax
errors, such as missing brackets or semicolons, render the code
invalid but require no in-depth understanding of identifier names’
meanings to be corrected.

3.3 Hypotheses

The objective of our empirical study was to investigate the impact of
descriptive compound identifier names on code comprehension. If
more descriptive identifier names improve code comprehension, we
expect an effect on the time required to find an error in the source
code (i.e., task completion time), but only when searching for a
semantic defect. Previous research has shown that programming
experience might moderate the impact of identifier naming on
code comprehension [19, 23]. However, the direction of the effect
is unclear. In summary, we tested the following hypotheses:

Hsemantic: Semantic defects in the source code are detected
faster with longer but more descriptive identifier names.

Hsyntactic: The length of the identifier name has no effect on
the time required to find syntax errors in the source code.

Hexperience: Programming experience moderates the impact of
identifier length on code comprehension (exploratory).

4 EXPERIMENTAL SETUP

The hypotheses were tested in a web-based experimental study. An
overview of the experiment is given in Table 1.

4.1 Source Code Selection

We created four code snippets in Java to have full control over the
stimulus materials and to ensure that no participant had seen the
materials before. All code snippets contained algorithms which
were simple enough to be comprehensible in a reasonable time

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

Table 1: Experiment overview

Goal Study the impact of identifier names
on program comprehension

Independent Variables Identifier naming (short single-word
vs. long descriptive compound), Task
(semantic defect, syntax error)

Task Identify semantic defect

Control Identify syntax error

Dependent Variable Time to find defect

Secondary Measures Visual attention, Correctness

Potential Confounding Materials, Inter-individual differ-
Factors ences, Item order

Design Within-subjects

Table 2: Examples of the different identifier naming styles

Type Descriptive compound identifier ~ Short identifier
Class UnderScoreCamelCaseConverter NotationConverter
Method convertUnderScoreToCamelCase camelcase
Parameter underScore input

Variable singleWordParts parts

Variable convertedInput result

Method capitalizeFirstLetter capitalize
Parameter notConverted input

Variable firstLetter first

Variable otherLetters other

Variable convertedWord converted
Method lowercaseFirstLetter lowercase

frame but complex enough for defects to “hide” in the code. In a
small pre-study with five participants we tested whether it was
possible to find each defect within 10 minutes and whether snippets
were of comparable difficulty. Each of the four snippets consisted of
a class with between one and three methods and comprised 27 lines
of code, i.e., the scope of variables and methods was kept small.
We then created four variants of each snippet, varying identifier
naming and task type. Figure 1 shows an example of the two naming
variants of a function. In Table 2 a direct comparison of descriptive
compound and short single-word names of the function “converter”
is displayed. For the short condition, we chose identifier names
that described the function of the method, parameter, or variable as
precisely as possible, mainly with one word. Longer identifier names
were created by choosing names that described the function of the
method, parameter, or variable in more detail. These identifiers were
mainly named with compounds of two or three words. In each of the
two naming variants an error was placed, either a semantic defect
or a syntax error. The errors were placed in similar locations in the
code to avoid a bias caused by the location. Table 3 summarizes the
experimental conditions and their mapping to the hypotheses. All
code snippets were presented with common syntax highlighting.

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

Short Variant

// Offers methods to convert text between camelcase (e.g., textInNotation)
// and underscore (eg., text_in notation) notation
public class NotationConverter {

1

2

3

4

5 public String camelcase (String input) {

6 String[] parts = input.split("_");

7 String result = parts[0];

8 for (int i = 1; i < parts.length; i++) {
9 result += lowercase(parts[i]);

10 }

11 return result;
12)

13

14 private String capitalize(String input) (

15 String first = input.substring(0, 1);

16 String other = input.substring(1);

17 String converted = first.toUpperCase ().concat (other);
18 return converted;

19 }

20

21 private String lowercase(String input) {

22 String first = input.substring(0, 1);

23 String other = input.substring(1l);

24 String converted = first.toLowerCase () .concat (other);
25 return converted;

Descriptive Compound Variant

1 // Offers methods to convert text between camelcase (e.g., textInNotation)
2 // and underscore (e.g., text_in_notation) notation

3 public class UnderScoreCamelCaseConverter {

4

5 public String convertUnderScoreToCamelCase (String underScore) {

6 String[] singleWordParts = underScore.split ("_");

7 String convertedInput = singleWordParts[0];

8 for (int i = 1; i < singleWordParts.length; i++) {

9 convertedInput += lowercaseFirstLetter (singleWordParts[i]);

10 }

11 return convertedInput;

12 }

13

14 private String capitalizeFirstLetter (String notConverted) {

15 String firstLetter = notConverted.substring(0, 1);

16 String otherLetters = notConverted.substring(l);

17 String convertedWord = firstLetter.toUpperCase ().concat (otherLetters);
18 return convertedWord;

19 }

20

21 private String lowercaseFirstLetter (String notConverted) {

22 String firstLetter = notConverted.substring(0, 1);

23 String otherLetters = notConverted.substring(l);

24 String convertedWord = firstLetter.toLowerCase ().concat (otherLetters);
25 return convertedWord;

Figure 1: The two naming variants of the function that con-
verts text between camelcase and underscore. This snippet
contains a semantic defect in line 9, lowercase should be cap-
italize.

4.2 Data Collection

The experiment was administered over the web. The application
we used was originally developed by J. Hofmeister [17] and was
adapted for the present study. For example, we included individual
performance feedback to motivate developers to participate. The
code is available on GitHub?.

After answering some general demographic questions, partici-
pants completed an example problem before starting to work on
the actual code snippets. Participants were asked to find one defect
in a snippet of code, which was repeated four times. After they had

Zhttps://github.com/acBerger/peter

A. Schankin et al.

Table 3: Experimental conditions and hypotheses

(iii) Identifier Length

(i) Code Snippet (ii) Type of Error Short =~ Compound
converter semantic Heem Hsem
syntactic Hsyn Hgyn
emailuser semantic Hgem Hgem
syntactic Hsyn Hsyn
familymember semantic Hsem Hgem
syntactic Hsyn Hsyn
linkedlist semantic Hsem Hgem
syntactic Hsyn Hgyn

completed two snippets with a semantic defect, participants were
asked to complete two more snippets but looking for a syntax error.

When participants had found the defect, they pressed the space
bar, which froze the viewer window and opened a dialog screen.
Here they entered the line number of the defect, a description, and
a correction (see Figure 2 right). Participants who had failed to find
the defect in a snippet after three attempts were allowed to finish
the experiment, but their data was excluded.

To gather coarse-grained data about participants’ visual focus,
we used an implementation of the restricted focus viewer [18],
which limited participants’ view on the code to seven lines at a
time (approximately one forth of the complete snippet). The viewer
window could be shifted up and down a line by using the arrow
keys to reveal different parts of the code (see Figure 2 left).

4.3 Experimental Design

We performed a web-based experimental study, in which we varied
the style of the identifier name (short, mostly single word vs. long,
descriptive compound name) and type of error (semantic vs. syn-
tactic) as independent variable in a within-subjects design. With
this design, we controlled for inter-individual differences between
participants.

All participants started with two semantic defects followed by
two syntax errors. The order of identifier naming styles (short vs.
long identifier names) were counterbalanced to control for order
effects. For each participant one of these sequences was randomly
selected and combined with a random ordering of the four source
code snippets.

In summary, every participant saw:

e all four snippets, encountering each snippet only once
o two semantic defects first, then two syntax errors
e both identifier naming styles, one for each type of error

4.4 Data Preparation and Analysis

Task completion time. We measured how long participants looked
at the code until they indicated that they had found the defect by
pressing the space bar. We subtracted the time spent answering
the dialog and only evaluated the time that participants interacted
with code.

Accuracy. Participants indicated the location of an error in the
code by typing in the line number and correcting the error. Number
of fails were used to measure accuracy.

Descriptive Compound Identifier Names Improve
Source Code Comprehension

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

Zeile Korrektur Beschreibung (optional)

(-]

Figure 2: Screen shot of the Ul Participants saw only parts of the code snippet in a window they could move (left). After
pressing the space bar to indicate that they had found the defect, participants entered the line number, a short description,

and a correction.

Focus of Attention. By presenting only 7 lines of source code in
a sliding window, we were able to observe participants’ focus of
attention during reading. For data analyses, the source code was
divided into four areas of interest (AOIs) (cf. [17]).

AOIcomment comprised all comment lines at the top of the snip-
pet, AOIp e Defect comprised the lines of code before the defect be-
comes visible in the letterbox, AOIpefect comprised the lines where
the defect is visible in the letterbox, and AOIpefec; comprised all
lines after the defect until the bottom of the snippet. Each letterbox
position was attributed to the AOI which contained the center line
of the letterbox. For our analyses we evaluated the AOIs’ dwell
times and visits. The times spent within an AOI were summed as
the AOI’s dwell time. Each movement from an AOI to another was
marked as a visit.

Changes in reading direction. A change in reading direction was
counted when the sliding window was moved in the opposite di-
rection for at least two consecutive moves.

4.5 Participants Demographics

Participants were invited to our experiment via direct contact and
a student e-mail list at the Karlsruhe Institute of Technology, Ger-
many. Overall, 187 students and professional developers started
to participate in the online experiment and 148 completed it. To
improve data quality, the following selection criteria were applied
(cf. Table 4). One participant with insufficient Java skills was ex-
cluded as were participants who did not complete all tasks, needed
more than 3 attempts or more than 10 minutes to succeed in finding
a defect. Furthermore, participants who reported encountering a
distraction or not having worked conscientiously were excluded.
Data from two participants with unusually short response times
were retained in the analysis as they did not have a strong effect
on overall results.

In total, 88 participants (82 male, 3 female, 3 did not indicate
their gender) remained in the sample, aged between 19 and 32
years (median: 23 years). Most of them had a bachelors (N = 48) or
masters (N = 7) degree in computer science, other started to study
(N = 27). The overall programming experience ranged between

Table 4: Exclusion criteria

Criterion n

Language German(1-6) <3 0
Level English(1-6) <2 0
Experience Java Skill Level (0-4) <1 1
Behavior Completed all tasks? No 39
Encountered distraction? Yes 23

Worked conscientiously? No 4

Attempts to succeed >3 26

Too slow (time per trial) >10min 28

Other Participated before? Yes 4

Total (Criteria not mutually exclusive) 99

1 and 16 years (median: 6 years) in 5 programming languages on
average. The experience with Java ranged between less than a year
and 10 years (median: 3 years).

5 EXPERIMENTAL RESULTS

In this section we report the results with regard to the hypotheses.
We calculated inferential statistics for semantic defects and syntax
errors separately. We employed a significance level of & = 0.05 for
all tests.

To facilitate evaluating the practical significance of results, we
calculated standardized effect sizes. For within-subjects differences,
we report Cohen’s d, with a correction for correlated observations
[12]. The proportion of variance explained (R?) is another com-
monly used index of effect size, which we report for some of the
central results. For interpretation we followed the conventions
suggested by Cohen [12] (see Table 5).

5.1 Semantic Defects (Hsemantic)

To assess the impact of identifier names on the time required to find
a semantic defect, a paired t-test was run with identifier style (short

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

Table 5: Conventions for the interpretation of effect sizes
[12]

Interpretation Cohen’sd, R?

small effect 0.20 0.01
medium effect 0.50 0.06
large effect 0.80 0.14

single-word vs. long descriptive compound) as independent variable
and task completion time as dependent variable. Participants were
about 29.5 seconds (or 14%) faster in finding a semantic defect when
identifiers were named with descriptive compounds compared to
short single words. This difference was statistically significant,
t(87) = 2.005, p = 0.048, but small (d, = 0.27). It explains about 2%
of the variability in the data (R* = 0.02). The effect is illustrated
in Figure 3 (left). The number of fails to report the error was not
affected by the style of the identifier names, ¢(87) = 0.427,p =
0.671,d; = 0.09.

The analysis of the AOIs reflects the visual focus of the par-
ticipants during code reading (see Figure 4 left). The identifiers’
naming style had no impact on the amount of time participants
spent with reading the commentaries at the beginning of the code
snippets, £(87) = 0.961,p = 0.339,d, = 0.14, or at the defect itself,
t(87) = 1.137,p = 0.258,d, = 0.16. However, with compound iden-
tifier names, participants focused their attention significantly longer
on the part before the defect, (87) = 2.566,p = 0.012,d, = 0.39,
whereas they spend more time after the defect with single-word
identifier names, t(87) = 2.286,p = 0.025,d, = 0.32. Again, these
effects were of small size, explaining about 2-3% of the variability
in the data.

The identifiers’ naming style also affected the number of changes
in reading direction (see Figure 5 left). Participants changed the di-
rection more often, i.e. they scrolled back and forth more frequently,
when identifiers were named with single words, ¢(87) = 2.968,p =
0.004, d, = 0.37. This is a small effect, which explains about 4% of
the variability in the data (R? = 0.04).

In summary, the style of the identifier names affected how source
code was read. With descriptive compound identifier names, par-
ticipants spent about 7% more time in the lines of code before the
actual defect occurred. They changed 24% less often their reading
direction and were able to find the semantic defect about 14% faster
than with short single-word identifier names.

5.2 Syntax Errors (Hgyntactic)

As a control condition, participants were asked to find syntax errors.
To complete this task, only knowledge about the syntax but not
about the content of a function is necessary. Therefore, we predicted
to observe no impact of identifier naming style on the dependent
variables. A power analysis indicated that the sample size was
sufficient to detect effects even of small-to-medium size (Cohen’s
z = 0.3) with a probability of 80%, i.e., finding a non-significant
result suggests that the effect is at most relatively small.
To assess the impact of identifier names on the time required to
find syntax errors, a paired ¢-test was run with identifier style (short
single-word vs. long descriptive compound) as independent variable

A. Schankin et al.

600
]
o s o
2 I S .
=) L4 ' [
a2 °
o 400 - _ °
E
= ° T
z [
g
L
=
a, 200
=
3
O
=
«
& | 1
\ \ \ \

short compound short compound

Semantic Defect Syntax Error

Figure 3: Task completion times for finding semantic defects
(left) and syntax errors (right) in the source code, separately
for short and descriptive compound identifier names.

100 [
g 80 8.7 8.9
o 9.5
< 11.1
Q
g 60|
B
S
& a0l 57 1 58.4 59.7
8 50.3
=]
[}
(5]
g
L 20

11.4 12.3 14.3 14.3

short compound short compound

Semantic Defect Syntax Error

0 commentary [pre-defect [defect B post-defect

Figure 4: Distribution of task completion time onto different
areas of interest (AOIs)

and task completion time as dependent variable. As expected, there
was no significant difference, $(87) < 0.653,p = 0.515,d, = 0.09.
The effect is illustrated in Figure 3 (right). The number of fails to
report the error was not affected by the style of the identifier names,
t(87) = 0.352,p = 0.726,d, = 0.07.

The visual focus during code reading was assessed by compar-
ing the time spent in different AOIs (i.e., commentary, pre-defect,
defect, and post-defect; see Figure 4 right). This was not affected
by the identifiers’ naming styles when looking for a syntax error
in the code, i.e., there was no significant difference between single

Descriptive Compound Identifier Names Improve
Source Code Comprehension

120 -
[]
§ 100}
2
Q
£
E 80 [~ °
=1
£ .
=S 60 9 °)
g s s
2 : S
5 40| -1
«\
%)
Y
g 20|
o
* ol J; 1 i S —
| | | |

short compound short compound

Semantic Defect Syntax Error

Figure 5: Number of changes in reading direction while find-
ing a semantic defect (left) or a syntax error (right), sepa-
rately for short and descriptive compound identifier names.

and compound identifier names in the reading time for different
parts of the code snippets, all t’s(87) < 1,p’s> 0.563,d, < 0.09.
Furthermore, the reading direction was not affected by the naming
style of the identifiers, t(87) = 1.550,p = 0.125,d, = 0.21 (see
Figure 5 right).

In summary, the style of the identifier names had no effect on
finding a syntax error in the source code, neither on how the code
was read nor in the time required to find the error.

5.3 Exploration: Impact of Programming
Experience (Hexperience)

Based on their overall programming experience in any program-
ming language (in years), participants were divided into two groups
by median split. Novice programmers (N = 45) were between 19
and 26 years old (median: 22 years), have had programmed 1 to 6
years (median: 5 years), with 4 different programming languages
(range: 1-13). Their experience with Java ranged between less than
a year and 6 years (median: 3 years). Experienced programmers
(N = 43) were between 20 and 32 years old (median: 24 years), had
between 7 and 16 years (median: 8 years) of experience in program-
ming with 6 different programming languages (range: 3-22). Their
experience with Java ranged between less than a year and 10 years
(median: 5 years).

With the following analyses, we explored whether the impact
of identifier names on finding semantic defects in the source code
depends on programming experience. The descriptive statistics are
presented in Table 6. We calculated t-tests separately for each group
(i.e., novice and experienced developers) to estimate the effect of
identifier names in each group. It should be noted that although this
analysis allows conclusions about the impact of identifier names in
each group, it is not possible to assess whether the impact differs
between the groups.

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

Novice developers. For novice developers, identifier names did
neither affect significantly task completion time, #(44) = 0.532,p =
0.597,d; = 0.10, the number of fails to report the error, t(44) =
1.062,p = 0.294,d, = 0.22, nor the time spent in different parts
of the source code (i.e., commentary, pre-, at, or post-defect), all
t(44)’s< 1.876,p’s> 0.066. The largest, but still very small, effect
was observed for the time spent after the defect, 1(44) = 1.875,p =
0.067,d; = 0.12, which explains about 1% of the variability of the
data (R? = 0.01). The number of changes in reading direction was
not affected by identifier names, #(44) = 0.110,p = 0.913,d, = 0.02.

Experienced developers. In contrast to novices, more experienced
developers were much faster in finding a semantic defect with com-
pound identifier names, ¢(43) = 2.724,p = 0.009,d, = 0.52. This
moderately strong effect explains about 6% of the variability in the
data (R? = 0.06). The number of fails did not differ between single
and compound identifier names, t(42) = 0.724,p = 0.473,d, = 0.15.
The visual focus of experienced programmers varied with identifier
naming style. When compound identifier names were used, experi-
enced programmers spent more time at the lines before the defect
occurred, t(42) = 2.362,p = 0.023,d, = 0.49, explaining 6% of the
variability in the data (R? = 0.06). There were no effects for other
parts of the source code, all ’s(42) < 1.309,p’s> 0.197,d, = 0.26.
Possibly compound identifier names were remembered better. This
hypothesis was supported by the finding of fewer changes in read-
ing direction with compound identifier names, #(42) = 2.419,p =
0.020, d, = 0.45, which explains about 5% of variability in the data
(R? = 0.05).

In summary, the style of identifier names had a moderate impact
on program comprehension for more experienced developers but
only a minor impact on how novice developers read or compre-
hended source code. The reported findings are not only statistically
significant but their medium effect sizes also point to their practical
significance.

6 DISCUSSION

The objective of the study was to assess the impact of identifier
length on code comprehension, given that longer identifiers are
more informative and not simply longer in the number of charac-
ters.

Our study shows that longer but more informative identifier
names improved code comprehension when an in-depth under-
standing of the code was required, i.e., to find and correct a semantic
defect. Participants needed about 14% less time with compound iden-
tifier names than with shorter single-word identifiers. Also, they
read the code more serially, jumping less frequently back and forth.
A more detailed analysis showed that these effects depended on
programming experience. Experienced but not novice programmers
significantly benefited from longer, descriptive identifier names.
If no detailed understanding of the code was necessary, i.e., to
find and correct syntax errors, identifier length had no impact on
comprehension.

Previous studies have indicated that longer, more informative
identifier names improve code comprehension [17, 19, 20]. Our
study extends to results by Hofmeister et al. [17] who tested single
letters, abbreviations, and single words with a clear advantage for
words. Using the same measure of code comprehension, our study

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

A. Schankin et al.

Table 6: Summary of descriptive statistics.

Measure Style
Task completion Single
Compound
Fails Single
Compound
Comment Single
Compound
Pre-Defect Single
Compound
Defect Single
Compound
Post-Defect Single
Compound
Reading Direction Single
Compound

Novice Expert
M SD M SD
238.1 116.7 207.7 109.7
225.6 127.3 160.4 63.3
0.2 0.5 0.2 0.5
0.4 0.7 0.1 0.5
11.4 5.8 114 8.0
13.6 7.5 11.0 5.3
48.9 20.8 51.8 16.3
54.7 1.2 59.6 16.0
9.3 9.1 12.9 114
8.8 9.2 10.2 9.1
30.4 19.7 23.9 16.2
229 16.6 193 141
14.6 16.0 15.1 14.2
143 108 9.6 9.6

shows that even longer names furhter improve the speed of code
comprehension.

In the following we will discuss our results with regard to un-
derlying cognitive processes and programming expertise. We will
then describe threats to validity, before concluding with practical
implications.

6.1 Cognitive Processes

Code comprehension involves various cognitive processes, e.g.,
perception, attention, memory, and reasoning. Because the length
and meaning of identifiers is closely related to working memory,
we will discuss its role in more detail.

Working memory is responsible for temporarily holding infor-
mation available for conscious processing. We use it, for example,
for reasoning or decision-making. New information can be stored
for about 15 to 30 seconds without rehearsal (i.e., repetition). Ac-
cording to the widely used model by Baddeley [3], working memory
consists of thee subsystems, a phonological loop to store auditory
information, a visual-spatial sketchpad for visual information, and
an episodic buffer that links information across domains to form
integrated units of visual, spatial, and verbal information with time
sequencing. The episodic buffer is also assumed to have links to
long-term memory and semantic meaning [2]. A forth component,
the central executive is a supervisory system that controls and reg-
ulates cognitive processes. It directs focus and targets information,
making working memory and long-term memory work together.
There is a broad line of psychological research which shows the
impact of working memory on reading comprehension in natu-
ral languages. For example, studies show that working memory
span and performance in reading comprehension measured with
standardized tests is highly correlated [4, 13].

One may argue that reading code with longer identifier names
requires larger cognitive capacity as more resources from work-
ing memory are claimed due to the word-length effect. However,

participants detected semantic defects faster with long identifiers.
Importantly, the long identifier names we used did not only consist
of more characters but carried more information about concepts
of the problem domain. This probably activated information in
long-term memory [3]. This idea is supported by our finding that
experienced developers benefited from longer identifier names,
whereas novice programmer did not (see also 6.2). Also, if short
and long identifier names carried about the same information, the
positive effect of longer identifiers should disappear. In the stud-
ies by Lawrie et al. [19, 20], short identifier names were common
abbreviations (e.g., count — cnt, length — len). In this case,
code comprehension was comparable for abbreviated and full-word
identifier names.

6.2 Impact of Programming Experience

In our study not every programmer benefited from compound
identifier names equally. Only experienced programmers read and
comprehended source code with longer identifier names more effi-
ciently. The effect of programming experience on comprehension
has been discussed previously.

For example, Lawrie et al. [19] hypothesized that an increased
work experience leads to a better code comprehension ability in
general, thus lowering the impact of the value of identifier quality.
In contrast to their expectation, they did not observe any effect of
work experience on code comprehension (measured with describ-
ing the functionality of the source code) but only on confidence
in the description. In our study we observed that experienced pro-
grammers benefited from more informative identifier names when
searching semantic defects. We will discuss three possible explana-
tions for this effect.

First, experienced programmers are used to read code with longer
identifier names. Various code conventions suggest to name func-
tions and variables with descriptive, informative names [15, 22].

Descriptive Compound Identifier Names Improve
Source Code Comprehension

Using short (i.e., single-word) names in an experiment is rather un-
usual for experienced programmers and might distract them from
the actual task, resulting in longer task completion times in this
condition. That is, the advantage of longer identifier names may be
actually a disadvantage of short identifier names.

Second, the effect of expertise might result from differences in
memory processes (see section 6.1). Understanding source code re-
quires an interplay between a limited-in-capacity working memory
and long-term memory [8]. To circumvent the limited capacity, in-
formation needs to be stored in long-term memory or to be chunked
(i.e., grouped together). Because of their experience with various
problem and application domains, experienced programmers might
be more efficient in mapping source code to concepts stored in
long-term memory in general or to chunk related information into
broader schemes (or even algorithms). More descriptive identifier
names may activate those concepts faster and more effectively than
short identifier names. This may leave more resources for code
comprehension in working memory.

Third, novice and experienced programmers may use different
code reading strategies. Bottom-up comprehension models propose
that abstract concepts of the source code are formed by combining
low-level information [26], while top-down models assume that
programmers use previous exposure to the application domain to
create expectations that are then mapped onto the source code [9].
Longer identifier names contain more cues to the intention behind
the code, which should make it easier to apply related domain
knowledge when trying to understand the code. As experienced
programmers are more likely to have extensive domain knowledge
that can be activated in this way, they may benefit more from
informative identifiers.

6.3 Threats to Validity

Internal validity defines the extent to which a causal conclusion
based on a study is warranted. We note the following limitations.
First, identifiers are informative only if programmers know the
problem or application domain to recall appropriate concepts from
long-term memory. This has not been controlled for. Code snippets
were chosen from domains that most students should be familiar
with. However, there might be individual differences between par-
ticipants. Second, the study was run web-based, i.e. we did not
have full control over the programmers’ behavior. Although we ap-
plied strong exclusion criteria (see above), it is unclear how exactly
participants proceeded to solve the tasks.

External validity defines the degree to which it is warranted to
generalize results to other contexts. We note the following limi-
tations. First, the code snippets we used were not representative
for large, complex software projects. For example, for each task
the code snippet consisted of one class with 1 to 3 methods and a
limited number of variables. That is, the scope of the source code
(and thus of code comprehension) was much smaller than in a com-
mon software project, with usually a variety of classes, inheritance,
and dependencies. Second, compound identifier names may not be
useful for all entities in the code. Informative names may be more
important for function and method names than for local variables,
but this hypothesis needs to be tested in future work. Third, the ef-
fect of programming expertise was tested exploratory. Participants

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

were divided into two groups using a median split, which might not
be representative for novice and expert programmers in general.
Finally, as participants knew that they were in an experimental
setting, they might have behaved differently from a real situations.

6.4 Practical Implications

For experienced programmers, we observed moderate positive ef-
fects of longer but more descriptive identifier names on code com-
prehension. As there was neither a positive nor negative effect for
novice programmers, the results of our study suggest using infor-
mative compound identifier names to improve comprehensibility
of source code. Our empirical study supports approaches such as
clean code [22] or domain-driven design [15]. Our findings clearly
show an advantage of descriptive identifier names even when the
scope of the variables is small.

This suggestion is also in line with empirical studies of code
quality [10, 11], showing that code quality is associated with using
identifier names composed of two to four words. Even for local
variables with limited scope a descriptive name may improve code
quality (but see Aman et al. [1])

7 CONCLUSION AND FUTURE WORK

The aim of the current study was to test the impact of longer but
more informative identifier names on code comprehension empir-
ically. Code comprehension was assessed by measuring the time
needed to find a semantic defect in the code, assuming that such a
defect can only be detected if the code has been understood. As a
control condition we measured to time to find a syntax error, which
does not require a full understanding of the source code.

The results show that descriptive compound identifier names
improved comprehensibility reflected in shorter task completion
times and fewer changes in reading direction. This was in particular
the case for more experienced programmers. We propose that de-
scriptive compound identifier names facilitate retrieving concepts
from long-term memory, relieving capacity from working memory
to perform the actual task.

As we varied the length of all identifiers, irrespective of their
function (class, method, parameter or variable), future research may
focus on investigating in which contexts using longer descriptive
names improves efficiency of code comprehension. Furthermore,
a better understanding of the underlying cognitive processes will
help to refine guidelines and conventions for identifier naming.

ACKNOWLEDGMENTS

The authors would like to thank all participants who spend their
time to support our research. This work was partially funded within
the EU FP7 project Prosperity4All (grant agreement no. 610510) and
it has been partially supported by the Deutsche Forschungsgemein-
schaft (DFG) (grant agreement no. SI 2045/2-1.).

REFERENCES

[1] Hirohisa Aman, Sousuke Amasaki, Tomoyuki Yokogawa, and Minoru Kawahara.
2016. Local variables with compound names and comments as signs of fault-
prone Java methods. In Joint Proceedings of the 4th International Workshop on
Quantitative Approaches to Software Quality and 1st International Workshop on
Technical Debt Analytics. 4-11.

[2] Alan D. Baddeley. 2000. The episodic buffer: A new component of working
memory? Trends in Cognitive Sciences 4, 11 (2000), 417-423.

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

Alan D. Baddeley. 2007. Working memory, thought, and action. Vol. 45. OUP
Oxford.

Alan D. Baddeley, Robert Logie, Ian Nimmo-Smith, and Neil Brereton. 1985.
Components of fluent reading. Journal of Memory and Language 24, 1 (1985),
119-131.

Alan D. Baddeley, Neil Thomson, and Mary Buchanan. 1975. Word length and the
structure of short-term memory. Journal of Verbal Learning and Verbal Behavior
14, 6 (1975), 575-589.

Dave Binkley, Marcia Davis, Dawn Lawrie, Jonathan I. Maletic, Christopher
Morrell, and Bonita Sharif. 2013. The impact of identifier style on effort and
comprehension. Empirical Software Engineering 18, 2 (2013), 219-276.

Dave Binkley, Marcia Davis, Dawn Lawrie, and Christopher Morrell. 2009. To
camelCase or under_score. In 17th International Conference on Program Compre-
hension (ICPC °09). IEEE, 158-167.

Dave Binkley, Dawn Lawrie, Steve Maex, and Christopher Morrell. 2009. Identifier
length and limited programmer memory. Science of Computer Programming 74, 7
(2009), 430-445.

Ruven Brooks. 1983. Towards a theory of the comprehension of computer
programs. International Journal of Man-Machine Studies 18, 6 (1983), 543-554.
Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2009. Relating
identifier naming flaws and code quality: An empirical study. In 16th Working
Conference on Reverse Engineering (WCRE "09). IEEE, 31-35.

Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2010. Exploring
the influence of identifier names on code quality: An empirical study. In 14th
European Conference on Software Maintenance and Reengineering (CSMR ’10).
IEEE, 156-165.

Jacob Cohen. 1988. Statistical power analysis for the behavioral sciences . Hilsdale.
(1988).

Meredyth Daneman and Patricia A. Carpenter. 1980. Individual differences in
working memory and reading. Journal of Verbal Learning and Verbal Behavior 19,
4 (1980), 450-466.

Florian Deissenboeck and Markus Pizka. 2006. Concise and consistent naming.
Software Quality Journal 14, 3 (2006), 261-282.

[15]
(1

&

(17]

[18

(19]

[20]

[21

[22

&
&

[24

[25

[26

A. Schankin et al.

Eric Evans and Rafal Szpoton. 2015. Domain-driven design. Helion.
Richard K. Fjeldstad. 1983. Application program maintenance study: Report to
our respondents. Proceedings GUIDE 48, 1983 (1983).

Johannes C. N. Hofmeister, Janet Siegmund, and Daniel V. Holt. 2017. Shorter

identifier names take longer to comprehend. In 24th International Conference on
Software Analysis, Evolution, and Reengineering (SANER ’17). IEEE, 217-227.
Anthony R. Jansen, Alan F. Blackwell, and Kim Marriott. 2003. A tool for tracking
visual attention: The Restricted Focus Viewer. Behavior Research Methods 35, 1
(2003), 57-69.

Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a name? A study of identifiers. In 14th International Conference on Program
Comprehension (ICPC °06). IEEE, 3-12.

Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2007. Ef-
fective identifier names for comprehension and memory. Innovations in Systems
and Software Engineering 3, 4 (2007), 303-318.

Ben Liblit, Andrew Begel, and Eve Sweetser. 2006. Cognitive perspectives on
the role of naming in computer programs. In Proceedings of the 18th Annual
Psychology of Programming Workshop.

Robert C. Martin. 2009. Clean code: a handbook of agile software craftsmanship.
Pearson Education.

Phillip Anthony Relf. 2004. Achieving software quality through source code
readability. Quality Contract Manufacturing LLC (2004).

Teresa M. Shaft and Iris Vessey. 1995. The relevance of application domain
knowledge: The case of computer program comprehension. Information Systems
Research 6, 3 (1995), 286-299.

Bonita Sharif and Jonathan I. Maletic. 2010. An eye-tracking study on camelCase
and under_score identifier styles. In 18th International Conference OnProgram
Comprehension (ICPC °10). IEEE, 196-205.

Ben Shneiderman and Richard Mayer. 1979. Syntactic/semantic interactions in
programmer behavior: A model and experimental results. International Journal
of Computer & Information Sciences 8, 3 (1979), 219-238.

	Abstract
	1 Introduction
	2 Related Work
	3 Research Question and Hypotheses
	3.1 Measuring Code Comprehension (Dependent Variables)
	3.2 Experimental Variation (Independent Variables)
	3.3 Hypotheses

	4 Experimental Setup
	4.1 Source Code Selection
	4.2 Data Collection
	4.3 Experimental Design
	4.4 Data Preparation and Analysis
	4.5 Participants Demographics

	5 Experimental Results
	5.1 Semantic Defects (Hsemantic)
	5.2 Syntax Errors (Hsyntactic)
	5.3 Exploration: Impact of Programming Experience (Hexperience)

	6 Discussion
	6.1 Cognitive Processes
	6.2 Impact of Programming Experience
	6.3 Threats to Validity
	6.4 Practical Implications

	7 Conclusion and Future Work
	Acknowledgments
	References

